630 research outputs found

    Distinguishing among dark matter annihilation channels with neutrino telescopes

    Full text link
    We investigate the prospects for distinguishing dark matter annihilation channels using the neutrino flux from gravitationally captured dark matter particles annihilating inside the sun. We show that, even with experimental error in energy reconstruction taken into account, the spectrum of contained muon tracks may be used to discriminate neutrino final states from the gauge boson/charged lepton final states and to determine their corresponding branching ratios. We also discuss the effect of Μτ\nu_\tau regeneration inside the sun as a novel method to distinguish the flavor of final state neutrinos. This effect as evidenced in the muon spectrum becomes important for dark matter masses above 300 GeV. Distinguishing primary neutrinos and their flavor may be achieved using multi-year data from a detector with the same capability and effective volume as the IceCube/DeepCore array.Comment: 12 pages, 12 figures. v2 matches the published version, with revised figures and added references for improved clarity; results unchange

    Caffeine Encapsulation in Metal Organic Framework MIL-53(Al) at Pilot Plant Scale for Preparation of Polyamide Textile Fibers with Cosmetic Properties

    Get PDF
    Currently in the marketplace, we can find clothing items able to release skin-friendly ingredients while wearing them. These innovative products with high-added value are based on microencapsulation technology. In this work, due to its lightness, flexibility, porosity, chemical affinity and adsorption capacity, metal-organic framework (MOF) MIL-53(Al) was the selected microcapsule to be synthesized at a large scale and subsequent caffeine encapsulation. The synthesis conditions (molar ratio of reactants, solvents used, reaction time, temperature, pressure reached in the reactor and activation treatment to enhance the encapsulation capacity) were optimized by screening various scaling-up reactor volumes (from lab-scale of 40 mL to pilot plant production of 3.75 L). Two types of Al salts (Al(NO3)3·9H2O from the original recipe and Al2(SO4)3 as commercial SUFAL 8.2) were employed. The liporeductor cosmetic caffeine was selected as the active molecule for encapsulation. Caffeine (38 wt %) was incorporated in CAF@MIL-53(Al) microcapsules, as analyzed by TGA and corroborated by GC/MS and UV-vis after additive extraction. CAF@MIL-53(Al) microcapsules showed a controlled release of caffeine during 6 days at 25 °C (up to 22% of the initial caffeine). These capsules were incorporated through an industrial spinning process (with temperatures up to 260 °C) to manufacture PA-6 fibers with cosmetic properties. Up to 0.7 wt % of capsules were successfully incorporated into the fibers hosting 1700 ppm of caffeine. Fabrics were submitted to scouring, staining, and washing processes, detecting the presence of caffeine in the cosmetic fiber. © 2022 The Authors. Published by American Chemical Society

    The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague)

    Get PDF
    The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. Located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore, its main goal is the search for astrophysical high energy neutrinos. In this paper we collect the 21 contributions of the ANTARES collaboration to the 34th International Cosmic Ray Conference (ICRC 2015). The scientific output is very rich and the contributions included in these proceedings cover the main physics results, ranging from steady point sources, diffuse searches, multi-messenger analyses to exotic physics

    Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    Get PDF
    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012. The results are compatible with fluctuations of the background. Upper limits on the neutrino fluence have been produced and compared to the measured gamma-ray spectral energy distribution.Comment: 27 pages, 16 figure

    All-sky Search for High-Energy Neutrinos from Gravitational Wave Event GW170104 with the ANTARES Neutrino Telescope

    Full text link
    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th^{\textrm{th}}, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the ANTARES neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within ±500\pm500 s around the GW event time nor any time clustering of events over an extended time window of ±3\pm3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than ∌4×1054\sim4\times 10^{54} erg for a E−2E^{-2} spectrum

    The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)

    Get PDF
    Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    The ANTARES Collaboration: Contributions to ICRC 2017 Part III: Searches for dark matter and exotics, neutrino oscillations and detector calibration

    Get PDF
    Papers on the searches for dark matter and exotics, neutrino oscillations and detector calibration, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio
    • 

    corecore